Near-blackbody enclosed particle receiver can support high-temperature thermal energy storage and high efficiency power cycles.
- [NREL] NREL Quantifies Value of CSP to the Grid
- [NREL] Boosting Accuracy of Testing Multijunction Solar Cells
- [NREL] NREL Study of Fielded PV Systems Demonstrates PV Reliability
- [NREL] Post-Deposition Treatment Boosts CIGS Solar Cell Performance
- [NREL] NREL Develops ZnSiP2 for Silicon-Based Tandem Solar Cells
National Renewable Energy Laboratory (NREL) scientists are designing and developing an innovative high-temperature particle receiver and integrated
heat-exchanger system to be used in high-efficiency concentrating solar power (CSP) systems.
This configuration is addressing the temperature, efficiency, and cost barriers associated with current molten-salt CSP systems. Even with significant improvements in operating performance, these molten-salt systems face challenges to satisfy desired cost and performance targets.

Schematic of NREL’s particle receiver module design that features highly effective solar heat collection Illustration by Al Hicks
The technical focus for NREL’s new receiver absorber, however, is a design that leads to greater than 90% receiver thermal efficiency for particle exit temperatures of 800°C, which will achieve a working fluid temperature greater than 650°C. In addition, the materials selected will withstand these high temperatures while yielding a receiver cost of less than $150 per kilowatt-thermal.
To analyze the receiver module performance, NREL has developed comprehensive thermal/ mechanical modeling tools based on NREL’s SolTrace ray-tracing model for receiver flux simulation, ANSYS Fluent thermal model, and mechanical simulation for service life. NREL has also built a particle-flow/heat-transfer test setup to characterize certain steps in the process that are difficult to evaluate through modeling.
These new modeling and testing tools are being used to design a prototype receiver whose performance will be verified in on-sun testing. This development work is also leveraging existing technology and manufacturing capabilities for the fluidized-bed thermal system, which will accelerate the realization of the technology and minimize the technical risk.
Key Research Results
Achievement
NREL has developed comprehensive thermal/mechanical modeling tools and has built a test setup for its particle receiver design.
Key Result
NREL modeled the thermal efficiency for its receiver module with average particle temperatures of 527°C and 727°C with respect to receiver aperture flux. At a solar flux of less than 1 MW/m2, both particle-temperature cases modeled showed a receiver thermal efficiency of greater than 90%.
Potential Impact
With its ultimate receiver design, NREL aims at a 30-year service life with a cost estimated at less than $100/kWth. The receiver can be integrated with particle thermal energy storage that costs less than $6/kWhth to make a high-temperature CSP system.
Year: 2014
Technical Contact: Zhiwen Ma,zhiwen.ma@nrel.gov
References: Ma, Z. (2014). “Development of Fluidized-Bed Technology and Near-Blackbody Enclosed Particle Receiver for CSP with Thermal Energy Storage.” Summary for SunShot Initiative CSP Program Review, May 2014.
Ma, Z.; Glatzmaier, G.; Mehos, M.; Sakadjian, B.; Fan, L.; Ban, H. (2013). “Development of a Near-Blackbody Enclosed Particle Receiver for a Concentrating Solar Power Plant Using Fluidized-Bed Technology.” SunShot Initiative CSP Program Review 2013, April 23–25, Phoenix, AZ, pp. 91–93.
Ma, Z.; Glatzmaier, G.; Mehos, M.; Sakadjian, B. (2014). “Development of a Concentrating Solar Power System Using Fluidized-Bed Technology for Thermal Energy Conversion and Solid Particles for Thermal Energy Storage.” SolarPACES 2014, forthcoming.
Source: NREL
Latest posts by Jack (see all)
- Can Plastic Be Eco-Friendly? - April 2, 2021
- Benefits of Recycling and Reusing Asphalt - January 28, 2021
- 5 Simple Ways to Improve the Quality of the Water in Your Home - December 2, 2020